NChO试题的特点及启示

时间:2023-01-12 10:40:05 浏览量:

摘要:分析了2001~2010年NChO初赛、决赛试题,对其考查的学科知识进行统计归纳,建构了基于NChO试题的化学学科能力结构模型。

关键词:NChO;全国高中学生化学竞赛试题;化学竞赛试题分析

文章编号:1005-6629(2011)11-0043-04 中图分类号:G632.479 文献标识码:B

为了选拔参加一年一度的国际化学奥林匹克竞赛选手,同时作为一项课外活动,为了普及化学基础知识,激励中学生接触化学发展的前沿,学习化学家的思想方法和工作方法,培养他们学习化学的兴趣爱好、创新意识、创新思维和初步的创新能力,自1984年以来,中国化学会每年在全国范围内主办“全国高中学生化学竞赛”(National Chemistry Olympic),简称NChO。

笔者以NChO初赛(2001~2010年)、决赛理论(2006~2010年)和决赛实验(2001~2010年)试题为研究对象,从学科知识和学科能力角度进行了系统的分析和统计,得到了一些结论和启示。

1试题研究

1.1初赛试题分析

以“初赛基本要求”为基础,分析2001-2010年初赛试题,如表1所示。使用Microsoft Office Excel2007软件进行知识点统计,分析每题所考查的化学学科能力,采用理论梳理和试题实证的方法建构化学学科能力模型。

1.2决赛理论试题分析

以“决赛基本要求”为基础,和初赛试题的分析方法类似,从学科知识和学科能力两个角度对2006-2010年决赛理论试题进行分析和统计,如表2所示。

2研究结论

2.1初赛学科知识分布

统计发现,2001-2010年NChO初赛试题共涉及9个知识点,依次为:①有机化学、②物质结构、③无机元素化学、④氧化还原和电化学、⑤化学平衡、⑥核化学、⑦有效数字和容量分析、③气体和溶液理论、⑨热力学。所涉及的知识点数及其比例如图1所示。

可见,NChO初赛试题的学科知识点和“初赛基本要求”中所列的知识点基本一致,但其侧重点却有较大的不同。

2.1.1初赛热点为有机化学、物质结构和无机元素化学

(1)有机化学考查的物质和反应类型都较全面

初赛基本要求中所列的烯、炔、环烃、芳香烃、卤代烃、醇、酚、醚、醛、酮、酸、酯、胺、酰胺、硝基化合物、磺酸,以及开环加成、取代、氧化、还原、羟醛缩合、周环反应等反应类型在近10年几乎都考过,环氧乙烷作为能发生开环加成的典型环烃,考过好几年,应引起注意。

(2)物质结构部分重点为配合物、晶体结构和分子结构

配合物知识常与无机元素化学综合,考查常见的配体、配位中心离子及其氧化态、配合物的构型等。近10年的无机元素化学热点包括:硼、卤族、氙、碳族、氮族、氧族,过渡金属则已经考过锰、铬、铁、钴、金、钛、铜、汞、镍的单质及其常见化合物的性质。

晶体结构已考过单斜、立方、菱方(三方)、四方、六方,7种晶系中只有正交、三斜尚未考过。要求熟练掌握NaCl型、闪锌矿型和萤石型晶胞,能够根据晶胞参数计算晶胞体积、晶体密度、晶胞中所含原子数等。

2.1.2少数未列于初赛基本要求的知识也出现

核化学并未出现在初赛基本要求中,但作为高中理科学习必须掌握的知识,2002、2004、2005和2010年都非常明显地考查了核化学,而其考核方式也比较单一,均是在认识α衰变等核反应的基础上,根据提供的信息完成核反应方程式。

化学热力学基础在决赛中是必须掌握的知识点,在初赛中并不作要求,但在2008年和2010年各考了一次,分别为根据反应物和生成物的标准摩尔生成焓计算标准摩尔燃烧热,以及利用已知公式nFEO=RTlnK计算反应平衡常数。

2.2决赛理论试题学科知识分布

2006-2010年NChO决赛理论试题学科知识分布如图2所示,从中可得出两个结论。

2.2.1决赛理论试题的学科知识分布比较稳定

除了以溶度积和亨利定律为代表的溶液理论外,无机元素化学、有机化学、热力学、电离平衡、滴定分析、物质结构是每年必考题,而动力学、相平衡和电化学则是最近3年才开始出现,不过一旦出现之后就随后几年也考,比较稳定。

2.2.2决赛理论试题在物理化学和分析化学上拓宽了学科知识范围

不难发现,决赛理论试题是按照无机化学、有机化学、分析化学、物理化学和结构化学的体系来划分的。

决赛比初赛加深的内容基本都在物理化学和分析化学上。其中物理化学内容以焓、熵、自由能等热力学函数与电池电动势、化学平衡常数之间的计算为主。分析化学则主要是酸碱滴定中根据各组分的电离平衡、电离平衡常数来计算各组分分配系数、组分浓度、化学计量点的pH等。而无机元素化学和有机化学的难度则和初赛差别不大。

2.3决赛买验试题的特点

2.3.1基本都属于有机合成、分析滴定相结合的综合实验

大多数实验的过程都符合一条主线:称量——合成——回收产品——溶液标定——计算产率或测定物性——评价。

该主线从基本操作、仪器使用、物质分离、产品精制、记录实验现象、数据处理等方面都达到本科化学系学生《有机实验》课程的要求。这就要求参赛学生不仅要熟练掌握中学化学常用试剂和仪器的使用,而且需要有针对性地走进大学化学实验室,动手进行具体的有机合成和分析化学实验,才能熟练掌握仪器使用、装置搭配、操作注意事项等。

2.3.2都是取材于与生产、生活有密切联系的工艺或产品

例如:2001年“富血铁的制备及含量测定”、2004年“由工业锌焙砂提取七水合硫酸锌及产品分析”、2008年“利用废聚酯饮料瓶回收对苯二甲酸”等,将学生置身于具体的应用情景中进行实验,充分体现STSE思想。

2.3.3不要求选手设计实验方案,但要求理解关键的实验步骤和实验原理

尽管整体实验复杂度不小,幸而题目中都会将具体操作描述清楚,选手按照题目要求即可顺利完成实验。但要求选手对一些关键步骤有清晰的认识,例如:为了防止乙酰基在滴定中水解应该如何正确操作(2003年)、具体阐明在制备MgSO4·7H4O时加入NaCIO的作用(2005年)、为什么要趁热抽滤(2005年)、为什么滴加亚硝酸钠溶液要控制在较低温度(2006-年)、根据哪些主要因素确定“顺4-环己烯-l,2-二羧酸的制备与纯化”步骤中加入水的总量(2010年)等。

选手只有熟练掌握竞赛大纲和高中化学教学要求中的知识点,深入透彻地了解酯化反应、氧化还原、酸碱中和、碘量法、误差计算等实验原理,才能理论联系实际,做出合理的解答。

2.3.4注重基本操作

2001~2010年,考查移液操作4次,滴定操作9次,抽滤操作8次,减量法称量操作7次,吸量管操作2次,

回流操作3次,蒸馏操作2次(包括减压蒸馏),分光光度法操作1次。

在滴定操作中,主要包括以下方面:

(1)以酚酞为指示剂进行酸碱中和滴定:4次;

(2)EDTA和金属离子的络合滴定:3次,分别为测定Cu2+(PAN指示剂)、Zn2+(甲基橙和二甲酚橙,或者铬黑T指示剂)、Mg2+的含量(铬黑T指示剂);

(3)碘量法:1次,用Na2S2O3做标准溶液,淀粉做指示剂;

(4)氧化还原滴定:1次,用硫酸铈(Ⅳ)铵溶液滴定硫酸亚铁铵溶液(邻二氮菲一亚铁指示剂)。

2.4基于NChO试题建构化学学科能力结构模型

张警鹏(2006年)认为,所谓学科能力,是指学生面对—定的学科问题情境,通过个体特定的心理操作,调动自己已有的学科知识和情境经验,以解决这一学科问题时所反映出的个性心理特征。问题是否能得以解决,与选手储备的学科知识和思维过程是否流畅有联系。根据对思维过程的要求,笔者建构出基于NChO试题的化学学科能力结构金字塔模型,其从下到上包括5个部分,如图3所示。

下面,笔者例举NChO试题,对该模型的5个组成部分加以阐释。

2.4.1储备—定量的化学解题原型

这里的原型,来自认知心理学关于问题解决机制的研究原型是某一概念具有代表性的特征属.陛的集合,概念中的其他成员与原型具有相似性,它可以是也可以不是实实在在的例子。问题解决者在解决问题时,试图-寻找到该类问题解答的有关“原型”,一旦记忆中有与新问题相匹配的原型,解法就发现了。

例如:(2010年初赛7-5)人工合成的A型分子筛钠盐,属于立方晶系,正当晶胞参数a=2464pm,晶胞组成为Na96[A196Si96O384]·xH2O。将811.5克该分子筛在1.01325×105Pa、700℃加热6小时将结晶水完全除去,得到798.6升水蒸气(视为理想气体)。计算该分子筛的密度D。

解答该题,需要具备的原型有:晶胞质量计算、立方晶系晶胞体积计算、晶体密度计算、结晶水合物质量与含水量的关系、理想气体状态方程等。

2.4.2空间想象力

由于化学学科的特点,在诸如晶体结构、分子结构、有机物立体化学等方面,学生掌握了某一类问题的原型后,还须具备空间想象力才能完成问题解决。

例如:(2005年初赛第6题)写出下列反应的每步反应的主产物(A、B、c)的结构式;若涉及立体化学,请用z、E、R、s等符号具体标明(B是两种几何异构体的混合物)。

解答该题,需储备z、E、R、S立体结构的原型,还需要具有一定的空间想象力,才能正确运用规则画出物质的立体化学结构式。

2.4.3信息识别与原型匹配

当学生储备了一定量的化学解题原型后,不同的学生面对具体的化学问题时,在陕速有效识别题目信息,充分进行问题表征,并正确进行原型匹配方面的表现还是有所差别,因此,能否正确进行原型匹配也是学科能力的一种体现。

例如:(2006年初赛第3题)下面4张图是用计算机制作的在密闭容器里,在不同条件下进行的异构化

图中的纵坐标表示__(填人物理量,下同);横坐标表示__。平衡常数K最小的图是__。平衡常数K最大的图是__。平衡常数K=1的图是__。

解答该题时,学生首先应识别出这是反应中各物质浓度随时间的变化图,然后调出脑中所储存的有关化学反应中物质浓度随时间变化关系、化学平衡常数等原型,再进一步分析各物质的变化趋势如何,进而计算出化学平衡常数的相对大小。

2.4.4合理假设,根据计算或者化学思想推理验证

NChO试题具有相当高度的选拔性,学生必然会碰到原型缺失,以致无法匹配的试题,特别是在无机元素化学、配合物及有机化学试题中,常会出现推断某物质的试题。这时候,学生是否能进行合理假设,然后再通过数学计算,或者根据化学思想来进行推理验证,就显出其学科能力的差别了。

其中,化学思想主要包括两方面:①结构、性质、用途相互依存;②守恒思想(包括能量守恒、原子守恒、电荷守恒、得失电子守恒等)。

例如:(2004年初赛第5题)研究发现,钒与吡啶-2-甲酸根形成的单核配合物可增强胰岛素降糖作用,它是电中性分子,实验测得其氧的质量分数为25.7%,画出它的立体结构,指出中心原子的氧化态。要给出推理过程。

解答该题时,学生脑中首先调出钒的配合物,及吡啶2-甲酸根的分子结构原型,但对几配位却无原型可以匹配。因此可用假设、计算推理验证的思路解决。首先设钒与2个吡啶甲酸根络合,根据吡啶甲酸根和钒的相对分子质量(分别为122和50.9),计算得氧的质量分数为21.7%;再设钒与3个吡啶甲酸根络合,得氧的质量分数为23.0%;设钒与4个吡啶甲酸根结合,氧的质量分数为23.7%;设钒与5个吡啶甲酸根结合,氧的质量分数为24.2%;钒与更多吡啶甲酸根络合将使钒的氧化态超过+5而不可能,因而应假设该配合物的配体除吡啶甲酸根外还有氧,设配合物为VO(吡啶甲酸根)2,相对分子质量为50.9+16.0+244=311,氧的质量分数为25.7%,符合题设,问题得解。

2.4.5实验能力

对实验能力从操作层面上来定义会比较便于理解,在参考陆泉芳、高锦章观点的基础上,笔者定义实验能力包括如下6个方面:①按实验步骤进行实验的能力;②选择仪器、试剂、技术、条件的能力;③正确的基本操作;④观察现象、测量数据的能力;⑤实验设计能力(科学性、方法的选择、组合、修改);⑥处理数据、表达结果和对结果进行评价的能力。

理论试题中主要考查实验设计能力,例如初赛:设计实验检验MnO2催化KClO3分解中可能产生的氯气(2007年);设计实验鉴别苯甲酸、苯甲醇、苯酚(2008年);设计滴定实验的空白实验(2009年)等。实验操作则综合考查了选手的实验能力。

综合以上分析,从化学学科能力角度考虑,决赛试题之所以比较难,主要原因为:化学解题原型储备量增大;试题信息复杂度加大,使得选手在信息识别与原型匹配阶段受到干扰;以及合理假设运用的情境增多等。

参考文献:

[1]中国化学会全国高中学生化学竞赛章程[E].http:///Contest/C/?jid=1.

[2]中国化学仝全国高中学生化学竞赛基本要求[E].http://WWW.CC$.ac.cn/contest/C/?jid=5.

[3]张警鹏.学科能力建模之高考实证分析.湖北招生考试[J].2006。(4):69~73

[4]张文广性构相依恩想的阐释及其教学实践探索[D].华东师范大学2008届研究生博士学位论文.

[5]陆泉芳,高锦章高中化学竞赛(决赛)实验试题的特点与对策[J].西北师范大学学报(自然科学版):2003,40:104~107

推荐访问:启示 试题 NChO