基于无网格局部Petrov-Galerkin法的板结构拓扑优化

时间:2022-12-24 17:35:04 浏览量:

摘 要:为将无网格法的优势集成到结构拓扑优化中,基于无网格局部Petrov-Galerkin(Meshless Local Petrov-Galerkin,MLPG)法进行板结构的拓扑优化.基于带惩罚的各向同性固体微结构(Solid Isotropic Microstructure with Penalization,SIMP)的拓扑优化模型和优化准则法建立设计变量的优化修正方案.位移场和相对密度场均采用自然邻接点插值形函数进行离散插值.几种典型的拓扑优化算例证明该数值算法的正确性和有效性.

关键词:板结构; 拓扑优化; 无网格法; 自然邻接点插值; 带惩罚的各向同性固体微结构模型

中图分类号:TB115.2 文献标志码:A

Topology optimization of plate structure based on

meshless local Petrov-Galerkin method

LI Shunli, LONG Shuyao, LI Guangyao, DING Canhui

(State Key Laboratory of Advanced Design and Manufacture for Vehicle Body,Hunan University, Changsha 410082, China)

Abstract: To apply the advantage of meshless method into the structural topology optimization, the topology optimization of plate structure is performed by using the Meshless Local Petrov-Galerkin(MLPG) method. The optimization correction program of the design variables is built by the topology optimization model based on Solid Isotropic Microstructures with Penalization(SIMP) and the optimality criteria method. The natural neighbour interpolation shape function is used to discretize both displacement field and relative density field. Several typical topology optimization examples are used to verify the validity and effectiveness of the numerical method.

Key words: plate structure; topology optimization; meshless method; natural neighbour interpolation; solid isotropic microstructure with penalization model

0 引 言

一种典型的拓扑优化问题目标为用给定的有限材料,在指定的空间内找到能支撑给定载荷的刚性最强的结构布局.自从BENDSE等[1]提出均匀化法以来,许多拓扑优化方法被相继提出,其中具有代表性的有带惩罚的各向同性固体微结构(Solid Isotropic Microstructure with Penalization, SIMP)模型[2-4]、进化法[5]和水平集法[6]等.

目前,拓扑优化中主要的分析方法是有限元法.但有限元法也有其缺点,在处理如大变形和移动边界问题时需不断重新划分和重构网格以解决网格畸变和网格移动等问题.在拓扑优化中,精确的结构响应分析至关重要.近年来,为克服对网格的依赖性,许多学者致力于无网格方法的研究.目前,无网格方法已有数十种之多,其中具有代表性的有光滑粒子动力学法[7]、无单元伽辽金法[8]、无网格局部Petrov-Galerkin(Meshless Local Petrov-Galerkin,MLPG)法[9]和自然元法[10-11]等.近年来,蔡永昌等[12]和WANG等[13]将基于自然邻接点插值的MLPG法成功应用于求解弹性力学的平面问题.

为将无网格数值方法的优势集成到结构拓扑优化的应用中,本文基于自然邻接点插值的MLPG法,实现一种新的Reissner-Mindlin板的拓扑优化.在大多数文献中,板的优化问题被描述为对加固部件的优化,主要采用均匀化法,但拓扑优化的是加固部件而不是基础结构.本文基于Reissner-Mindlin板的MLPG模型,采用基于SIMP法的拓扑优化模型和优化准则法建立设计变量的优化修正方案.位移场和相对密度场均采用自然邻接点插值形函数进行离散插值.棋盘格布局是拓扑优化中经常遇到的数值不稳定现象之一,SIMP法需结合周长约束、梯度约束或者采用过滤技术以确保解的存在.[14]因采用连续的密度场(自然邻接点插值除在节点上是C0连续外,其他域内都是光滑的C∞),故无须任何外加的过滤技术就可有效消除材料分布的棋盘格形式.

1 自然邻接点插值

自然邻接点插值基于著名的Voronoi结构和Delaunay三角形网格.考虑R2空间上的一系列离散的节点N={n1,n2,…,nM},N的Voronoi图(1阶Voronoi图)将平面细分为一系列与节点ni相对应的区域Ti,在Ti内的任何点到节点ni(最近的邻接点)的距离均小于该点至任何其他的节点nj(nj∈N(j≠i))的距离,即Ti=x∈R2:d(x,xi)

Fig.1 Voronoi diagram and Delaunay triangula-tion diagram式中:d(x,xi)为x到xi之间的距离.Voronoi单元Ti是由节点ni与其自然邻接点连线的垂直平分线为界的多个开放的半空间交集.Delaunay三角形剖分图由连接拥有同一边界的Voronoi单元的节点构成.图1为一组节点的Voronoi图和Delaunay三角形剖分图.在此基础上,进一步建立点x的2阶Voronoi结构,见图2.

3 基于MLPG的拓扑优化

在结构拓扑设计中,最感兴趣的是决定所给各向同性材料在空间的最优分布,即决定哪些空间点为材料点,哪些点保留为空(非材料点)[15].解这类离散值设计问题(0-1问题)的最常用方法是用连续变量替换原来的整数变量,并引入某种形式的惩罚引导逼进0-1问题的解.本文采用SIMP法[2]

4 数值实例

本文给出几种典型板的拓扑优化,验证基于自然邻接点插值MLPG法的Reissner-Mindlin板的拓扑优化方法的正确性和有效性.在下列算例中,弹性材料常数为:杨氏模量E=2×1011 Pa,泊松比 =0.3,移动步长m=0.2,调谐参数 =0.5.

图 3 四边固支Reissner-Mindlin方形板的最小柔量拓扑优化

Fig.3 Topology optimization for minimum compliance of Reissner-Mindlin square plate with four clamped edges算例1 讨论中心受集中力F=1.0×106 N,厚h=0.1 m,边长a=1.5 m的四边固支Reissner-Mindlin方形板的拓扑优化.问题域由31×31规则分布的节点离散,密度惩罚因子P=3.0.用本文方法得该板最小柔量拓扑优化见图3,其材料体积约束f=0.3.经过优化,按结构柔量最小原则对有限的材料进行重新布局,在弯矩最大的板中心区域及弯矩较大的四固支边的中部得到明显加固.

图 4 固支板的载荷

Fig.4 Loads on clamped plate算例2 分析与算例1相同的固支板拓扑优化.该板同时受4个向下的集中力作用,见图4.问题域由31×31规则分布的节点离散,密度惩罚因子P=3.0.拓扑优化见图5,图5(a)和5(b)的材料体积约束f分别为0.3和0.4,可知图5(a)与图3的结构大体相似,主要差异在圆圈处.

(a)f=0.3(b)f=0.4图 5 同时作用4个向下集中力的四边固支Reissner-

Mindlin方形板的最小柔量拓扑优化

Fig.5 Topology optimization for minimum compliance of Reissner-Mindlin square plate with four clamped edges loaded with four concentrated downward force

图 6 设计域和载荷

Fig.6 Design problem

and loads算例3 考虑在自由端受2个集中力载荷的悬臂方形板的拓扑优化,其设计域和载荷见图6.设计域仍然由31×31规则分布的节点离散,密度惩罚因子P=3.0.自由端受2个向下集中力作用的悬臂板最小柔量拓扑优化见图7,其材料体积约束f为0.5.

图 7 自由端受2个向下集中力作用的悬臂板

最小柔量拓扑优化

Fig.7 Topology optimization for minimum compliance ofcantilever plate with the free ends loaded with two concentrated downward forces5 结 论

提出一种基于自然邻接点插值的MLPG法的Reissner-Mindlin板的拓扑优化.自然邻接点插值形函数具有Kronecker Delta函数性质,易于施加本质边界条件.在优化过程中,结构响应分析、灵敏度分析和相对密度场均在无网格模式下采用自然邻接点插值形函数近似,不存在网格扭曲,也不需要进行网格重构.本文成功求解几个板的拓扑优化问题,数值算例表明本文方法能有效处理拓扑优化问题.由于采用连续的密度场,无须额外施加任何的过滤技术,可有效消除材料分布的棋盘格模式.

参考文献:

[1] BENDSE M P, KIKUCHI N. Generating optimal topology in structural design using a homogenization method[J]. Comput Methods Appl Mech & Eng, 1988, 71(2): 197-224.

[2] BENDSE M P. Optimal shape design as a material distribution problem[J]. Struct & Multidisciplinary Optimization, 1989, 1(4): 193-202.

[3] BENDSE M P, SIGMUND O. Material interpolation schemes in topology optimization[J]. Archive Appl Mech, 1999, 69(9-10): 635-654.

[4] ZHOU M, ROZVANY G I N. The COC algorithm part II: topological, geometrical and generalized shape optimization[J]. Comput Methods Appl Mech & Eng, 1991, 89(1-3): 309-336.

[5] XIE Y M, STEVEN G P. A simple evolutionary procedure for structural optimization[J]. Computers & Structures, 1993, 49(5): 885-896.

[6] WANG M Y, WANG Xiaoming, GUO Dongming. A level set method for structural topology optimization[J]. Comput Methods Appl Mech & Eng, 2003, 192(1-2): 227-246.

[7] GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics: theory and applications to non-spherical stars[J]. R Astron Soc Mon Not, 1977, 181(1): 375-389.

[8] BELYTSCHKO T, LU Y Y, GU L. Element-free Galerkin methods[J]. Int J Numer Methods Eng, 1994, 37(2): 229-256.

[9] ATLURI S N, ZHU T. A new meshless local Petrov-Galerkin(MLPG) approach in computational mechanics[J]. Comput Mech, 1998, 22(2): 117-127.

[10] BRAUN J, SAMBRIDGE M. A numerical method for solving partial differential equations on highly irregular evolving grids[J]. Nature, 1995, 376(6542): 655-660.

[11] SUKUMAR N, MORAN B, BELYTSCHKO T. The natural element method in solid mechanics[J]. Int J Numer Methods Eng, 1998, 43(5): 839-887.

[12] 蔡永昌, 朱和华, 王建华. 基于Voronoi结构的无网格局部Petrov-Galerkin方法[J]. 力学学报, 2003, 35(2): 187-193.

CAI Yongchang, ZHU Hehua, WANG Jianhua. The meshless local Petrov-Galerkin method based on the Voronoi cells[J]. Chin J Theor & Appl Mech, 2003, 35(2): 187-193.

[13] WANG Kai, ZHOU Shenjie, SHAN Guojun. The natural neighbour Petrov-Galerkin method for elasto-statics[J]. Int J Numer Methods Eng, 2005, 63(8): 1126-1145.

[14] SIGMUND O, PETERSSOM J. Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima[J]. Struct Optimization, 1998, 16(1): 68-75.

[15] BENDSE M P, SIGMUND O. Topology optimization: theory, methods and applications[M]. 2nd ed. Berlin Heidelberg: Springer-Verlag, 2003: 4-5.

[16] SIGMUND O. A 99 line topology optimization code written in Matlab[J]. Struct & Multidisciplinary Optimization, 2001, 21(2): 120-127.

(编辑 于 杰)

推荐访问:拓扑 网格 局部 优化 结构